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What exactly is the three-body problem?
What means that it is "unsolvable"?

Problem formulation: Three bodies move in space under their mutual
gravitational attraction. Given their initial conditions (initial positions
and velocities), determine their subsequent motion.

In 1887 Ernst Heinrich Bruns (professor of astronomy in Leipzig)
showed that there are 18 degrees of freedom, but only 10 integrals of
motion in the dynamics of three bodies. From this result follows that
there is no general closed-form solution to the three-body problem. In
other words, it does not have a general solution that can be expressed
in terms of a �nite number of standard mathematical operations.

Moreover, as Henri Poincar�e shows in 1890, the motion is mathematically
chaotic, particularly it has a sensitive dependence on the initial conditions.
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Henri Poincar�e (1854-1912)

�... what makes these (periodic) solutions so precious to us, is
that they are, so to say, the only opening through which we can
try to penetrate in a place which, up to now, was supposed to be
inaccessible.�
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Why are periodic orbits important?

A) The periodic orbits existence can be rigourously proved. Di�erent
methods from di�erential equations theory can be implemented, like
�xed point theorem, power or Fourier series expansion, et cetera.

B) The knowledge of one period gives the full knowledge of the
solution, which simpli�es the qualitative analysis of the solution.

C) The periodic orbits can be computed for all time with any given
accuracy.

D) The unstable periodic orbits provide critical information in chaotic
regions.



D
ra
ft

5/43

◀◀
▶▶
◀
▶

Back

Close

Why are periodic orbits important?

De�nition: Call a motion bounded if the distance between the three
bodies remains bounded as a function of time, and unbounded otherwise.

E) According to Kolmogorov-Arnold-Moser (KAM)-theory stable
periodic orbits are surrounded by sets of orbits with bounded motions.

F) The most interesting feature of periodic orbits remains the still
unproved Poincar�e "other conjecture":
The periodic solutions of the three-body problem are dense in the set

of bounded solutions.
If true this conjecture would show that the periodic solutions are a

very e�cient mean of "exploration".

Another open problem: Is it true that arbitrarily close to any bounded
solution lies an unbounded solution?
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Three-body problem and chaos

The three-body system is habitually described as chaotic. However,
there are plenty of stable periodic equal-mass three-body orbits, which
contradicts the requirement that a chaotic system has only unstable
periodic orbits. Manifestly, only a subset of the full equal-mass three-
body problem can be chaotic.

No universally accepted mathematical de�nition of chaos exists. A
simple and widely used de�nition given by Robert L. Devaney, says that
to classify a dynamical system as chaotic, it must have these properties:

1) It must be sensitive to initial conditions.

2) It must have dense periodic orbits.

3) It must have topological mixing.
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Sensitive dependence on initial conditions

δ(t) ≈ δ(0)eλt

λ > 0 is the Lyapunov exponent
Predictability horizont (Lyapunov time) T is de�ned by

T =
1

λ
ln(

tol

ε
)

where tol is our tolerance and ε is the round-o� unit (precision)
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�...Numerical precision is the very soul of science, and its attainment
a�ords the best, perhaps the only criterion of the truth of theories and
the correctness of experiments.�

Sir D'Arcy Wentworth Thompson (1860-1948), On Growth and Form
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What we generally need to obtain a reliable
long-term solution when the solution is sensitive?

We need to combine:

1. A multiple-precision �oating point arithmetic

with

2. A class of numerical methods allowing arbitrary
high order of accuracy.

In our work we use:

1. GMP library (The GNU Multiple Precision Arithmetic Library).

2. Taylor series method (TSM) as an ODE-solver.
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Recently published papers

Hristov, I., Hristova, R., Dmitra�sinovi�c, V., Tanikawa, K.
�Three-body periodic collisionless equal-mass free-fall orbits revisited�
Celestial Mechanics and Dynamical Astronomy, 136(1), 7, 2024

Hristov, I., Hristova, R., Dmitra�sinovi�c, V., Tanikawa, K.
�Instability of three-body periodic collisionless equal-mass free-fall orbits�
In Journal of Physics: Conference Series (Vol. 2910, No. 1, p. 012030).
IOP Publishing, 2024

Hristov, I., Hristova, R. �An e�cient approach for searching three-
body periodic orbits passing through Eulerian con�guration�
Astronomy and Computing, 49, 100880, 2024

Hristov, I., Hristova, R., Puzynin, I., Puzynina, T., Sharipov,Z., Tukhliev,Z.
�Searching for New Nontrivial Choreographies for the Planar Three-
Body Problem� Physics of Particles and Nuclei, 55(3), 495-497, 2024
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Di�erential equations

The di�erential equations for the three-body problem are derived from
Newton's second law and Newton's law of gravity:

mir̈i =
3∑

j=1,j ̸=i

Gmimj

(rj − ri)

∥ri − rj∥3 , i = 1, 2, 3.

We consider normalization G = m1 = m2 = m3 = 1 and planar
motion. We solve the system numerically in the following �rst order
form:

ẋi = vxi, ẏi = vyi

v̇xi =
3∑

j=1,j ̸=i

(xj − xi)

∥ri − rj∥3 , v̇yi =
3∑

j=1,j ̸=i

(yj − yi)

∥ri − rj∥3 , i = 1, 2, 3

So we have a vector of 12 unknown functions:

X(t) = (x1, y1, x2, y2, x3, y3, vx1, vy1, vx2, vy2, vx3, vy3)
⊤

The model treats the bodies as point masses.
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Free-fall initial conditions. Agekyan-Anosova's domain

(x1(0), y1(0)) = (−0.5, 0), (x2(0), y2(0)) = (0.5, 0)

(x3(0), y3(0)) = (px, py)

(vx1(0), vy1(0)) = (vx2(0), vy2(0)) = (vx3(0), vy3(0)) = (0, 0)

We have two parameters px, py - the coordinates of the point P
in the Agekyan-Anosova's domain.
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Euler initial conditions (Euler half-twist conditions)

Euler initial conditions are the following symmetrical collinear with
parallel velocities conditions with two parameters vx > 0, vy > 0:

(x1(0), y1(0)) = (−1, 0), (x2(0), y2(0)) = (1, 0)

(x3(0), y3(0)) = (0, 0)

(vx1(0), vy1(0)) = (vx2(0), vy2(0)) = (vx, vy)

(vx3(0), vy3(0)) = −2(vx1(0), vy1(0)) = (−2vx,−2vy)

For initial positions xi(0), yi(0) �xed as above, the two-dimensional
space of velocities is precisely the space of all velocities for which the
linear and angular momentum are zero and for which the moment of
inertia I = x1

2 + y1
2 + x2

2 + y2
2 + x3

2 + y3
2 has an extremum at t = 0.
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Euler initial conditions: The 2D search domain
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As only negative energies (only bounded motions) have to be considered,
the 2D search domain is actually those bounded by vx = 0 and vy = 0
axis and E = 0 curve. E = −2.5 + 3(vx

2 + vy
2) = 0.
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The new searching approach for free-fall periodic orbits

The free-fall periodic orbits shuttle back and forth between two stop
triangles. Instead of looking for orbits that satisfy the standard periodicity
condition, we could look for orbits that stop at some later time - an
approximation of T/2.

Picture from R. Montgomery �Dropping bodies� The Mathematical
Intelligencer 45.2 (2023): 168-174
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The new searching approach for Eulerian periodic orbits

The orbits in the basic �Suvakov and Dmitra�sinovi�c paper are divided
into two types: �(I) those with re�ection symmetries about two orthogonal
axes on the shape sphere - the equator and the zeroth meridian and
(II) those with a central re�ection symmetry about a single point -
the intersection of the equator and zeroth meridian�.
The main observation is that the bodies pass again through Euler

con�guration at the half period!
type (I) type (II)

If this property can be proved, than instead of looking for orbits that
satisfy the standard periodicity condition, we could look for orbits that
pass again through Euler con�guration at some later time.
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The �half period� property was proved by
prof. Richard Montgomery

If a three-body solution r(t) has Eulerian half-twist initial conditions
at time t = 0 and is periodic of period T then it has Eulerian half-
twist initial conditions at the half period time t = T/2.
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Lyapunov exponents' argument, which tries to explain
the observed high e�ciency of the �half period� approach

Let us assume unstable periodic orbits and that for small separation
d(t) = ∥p(t)− p̃(t)∥2 between adjacent trajectories the exponential
law of divergence is satis�ed:

d(t) ≈ d(0)eλt, λ − the Lyapunov exponent

Here p(t) is a given unstable periodic orbit and p̃(t) is an approximation
of it. What is the e�ect of the integration time division by two, i.e. the
e�ect of solving the Euler equation at t = T/2 instead of solving the
periodic equation at t = T ? The bene�t is not simply reducing the
computational time by two, but much more. We have a �square root
e�ect� on the distance between adjacent trajectories, meaning that:

d(T/2) ≈ d(0)
√
eλT , T − the period

Let us take for example d(0) ≈ 10−4 and take eλT ≈ 108. Then
d(T/2) ≈ 1, but d(T ) ≈ 104.



D
ra
ft

23/43

◀◀
▶▶
◀
▶

Back

Close

Return proximity function
for the standard periodicity condition (equation)

Let us denote the solution with Euler initial conditions withX(vx, vy, t).
If we denote the periods of the orbits with T , then the goal is to �nd
triplets (vx, vy, T ) for which the periodicity condition (equation):

X(vx, vy, T ) = X(vx, vy, 0)

is satis�ed. The function

R(t) = ∥X(vx, vy, t) − X(vx, vy, 0)∥2, t > 0

is called the return proximity function. The triplet (vx, vy, T ), T > 0
corresponds to a periodic solution only if R(T ) = 0. For approximate
solution with approximations (vx, vy, T ), R(T ) is the measure of how
close to a periodic solution we are. R(T ) is the residual in which terms
we de�ne the convergence of the Newton's method for the standard
periodicity condition.



D
ra
ft

24/43

◀◀
▶▶
◀
▶

Back

Close

Proximity function for the �half period� Eulerian condition

If we introduce the vectorsX1(t) = (x1, y1, vx1, vy1)
⊤
,X2(t) =

(−x2,−y2, vx2, vy2)
⊤
, the �half period� Eulerian condition becomes:

X1(vx, vy, T/2) = X2(vx, vy, T/2)

The proximity function for Eulerian condition is de�ned as:

Re(t) = ∥X1(vx, vy, t) − X2(vx, vy, t)∥2, t > 0

The triplet (vx, vy, T ), T > 0 corresponds to a solution of the
Eulerian condition (equation) at T only if Re(T ) = 0. T is an
approximation of T/2.



D
ra
ft

25/43

◀◀
▶▶
◀
▶

Back

Close

Stages of the numerical search

Stage I: Scanning stage: Candidates for correction (initial approximations)
are computed by scanning the initial condition domain with the grid-
search algorithm. At each grid point (vx, vy) we simulate the three-body
ODE system with the Euler initial condition up to some pre-de�ned value
of time T0/2. At each grid point (vx, vy) we compute the time T at
which the minimum:

Re(T ) = min
1<t<T0/2

Re(t)

is obtained. Candidates are those triplets (vx, vy, T ) with small values
of the proximity function Re(T ).

Stage II: Capturing stage: The periodic solutions are captured with
modi�ed Newton's method starting with initial approximations obtained
in stage I. The convergence is in terms of the proximity functionRe(T ).

Stage III: Veri�cation stage: The solutions are computed with
many correct digits and the convergence of Newton's method is checked.
The convergence is in terms of the return proximity function R(T ).
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The linear system at each Newton's iteration at stage I,II
(the linear system with respect to the Eulerian condition)

Let T be an approximation of T/2 and the triplet (vx, vy, T ) be
an approximation of the �half period� Eulerian condition (equation) at
T/2, i.e. X1(vx, vy, T ) ≈ X2(vx, vy, T ).
Then the Eulerian equation with corrections ∆vx,∆vy,∆T is:

X1(vx+∆vx, vy+∆vy, T+∆T ) = X2(vx+∆vx, vy+∆vy, T+∆T )

Expanding this equation in a multivariable linear approximation gives:
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The linear system at each Newton's iteration at stage I,II
(the linear system with respect to the Eulerian condition)

Finally, we obtain the following linear system with a 4× 3 matrix with

respect to (∆vx,∆vy,∆T )
⊤
, that have to be solved at each Newton's

iteration.

The linear systems are solved in least square sense by QR-decomposition
based on Householder re�ections!
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The linear system at each Newton's iteration at stage III

Let (vx, vv, T ) be an approximation for a periodic orbit,
i.e.X(vx, vy, T ) ≈ X(vx, vy, 0). These approximations are improved
with corrections∆vx,∆vy,∆T by expanding the periodicity condition:

X(vx+∆vx, vy+∆vy, T +∆T ) = X(vx+∆vx, vy+∆vy, 0)

in a multivariable linear approximation:
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Modi�ed Newton's method (Igor Viktorovich Puzynin)

Let the triplet (vx, vy, T ) be an approximate solution of the �half
period� Eulerian condition (equation). We correct and obtain the next
approximation with the classic Newton's method this way:

vx := vx + ∆vx, vy := vy + ∆vy, T := T + ∆T

At stage II of the numerical search we use a modi�cation of Newton's
method based on the continuous analog of Newton's method. We introduce
the parameter pk: 0 < pk ≤ 1, where k is the number of the iteration.
Now we correct this way:

vx := vx + pk∆vx, vy := vy + pk∆vy, T := T + pk∆T

Let Rk be the value of the proximity function Re(T ) (the residual)
at the k-th iteration. With a given p0 the next pk, k = 1, 2, ... is
computed with the following adaptive algorithm:

pk =

 min(1, pk−1Rk−1/Rk), Rk ≤ Rk−1,

max(p0, pk−1Rk−1/Rk), Rk > Rk−1,
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Computing the coe�cients of the linear system

To compute the coe�cients in the 12×3 matrices or 4×3 matrices
of the linear systems, we have to add to the 12 equations in the original
system, the 24 di�erential equations for the partial derivatives with
respect to the parameters vx, vy:

∂xi

∂vx

(t),
∂yi

∂vx

(t),
∂vxi

∂vx

(t),
∂vyi

∂vx

(t), i = 1, 2, 3.

∂xi

∂vy

(t),
∂yi

∂vy

(t),
∂vxi

∂vy

(t),
∂vyi

∂vy

(t), i = 1, 2, 3.

These equations can be obtained by di�erentiation of the original system
with respect to the parameters vx, vy, but we do not need them in
explicit form for the ODE solver we will used.

A crucial decision for the success of �nding periodic orbits is the choice
of the numerical algorithm for solving this system of 36 ODEs. We use
high order high precision Taylor Series Method (TSM).
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Taylor Series Method (TSM)
Joseph-Louis Lagrange termed Taylor's theorem
�The main foundation of di�erential calculus.�



D
ra
ft

32/43

◀◀
▶▶
◀
▶

Back

Close

Taylor Series Method (TSM)

For the initial value problem u̇(t) = f(u, t), u0 = u(0), the
N-th order Taylor series method for �nding an approximate solution
U(t) ≈ u(t) is given by:

U(t + τ ) =
N∑
i=0

U [i]τ i, U [i] =
1

i!

dU (i)(t)

dti
,

where the coe�cients U [i] are called normalized derivatives.
The use of an adaptive step-size strategy is crucial for the three-body

problem. The time stepsize τ is determined this way:

τ =
e−0.7/(N−1)

e2
min


(

1

∥U[N−1]∥∞

) 1
N−1

,

(
1

∥U[N]∥∞

) 1
N


Jorba, Angel, and Maorong Zou Experimental Mathematics

14.1 (2005): 99-117
Normalized derivatives are computed with the rules of automatic

di�erentiation!
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Parameters of simulations and accuracy analysis

• As numerical experiments show, order 22 per each 64 bit mantissa
(bit of precision) is an optimal choice.
• At stage I precision of 128 bit (≈ 38.5 decimal digits) and 44 order

TSM are used.
• At stage II precision of 192 bit (≈ 57.8 decimal digits) and 66

order TSM is used. A periodic solution is captured if Re(T ) < 10−20.
Each captured solution is additionally speci�ed up to Re(T ) < 10−50

by computations with increased precision of 320 bit (≈ 96.3 decimal
digits) and 110 order TSM.
• At stage III we gradually increase the precision and Taylor series

order starting with 448 bit of precision and 154 order. The stage may
consist of several substages, depending on the accuracy we want. The
iterations are until convergence (until return proximity stops to decrease).
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Convergence of Newton's method for �a di�cult� i.c.
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�A di�cult� for computing i.c. means that this is the i.c. for which
the minimal return proximity much below the used precision (for the
example about 26 digits below the used precision). For this picture 704
bit of precision and 242 order TSM is used.



D
ra
ft

35/43

◀◀
▶▶
◀
▶

Back

Close

Return proximity R(t) evolution of the �di�cult� i.c. for i.c given with
116 decimal digits corresponding to 384 bit precision
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Real space plot for the �di�cult� i.c.
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Li and Liao's i.c.s and colormap of escape times
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(Li and Liao's 695 i.c.s) (Martynova et. al, Astronomy reports 53 (2009))
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The newly found Euler i.c.s and colormap of escape times

(More than 400,000 i.c.s) (Martynova et. al, Astronomy reports 53 (2009))
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FF results - 24,582 i.c.s found (�Maasai shield� structure)
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Distribution of i.c.s escape times
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Distribution of the maximal Lyapunov exponents of
free-fall periodic orbits
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The two faces of the three-body problem (Veljko's notes)

There is no doubt in my mind that this study will change the whole
�atmosphere� around free-fall orbits, and that people will recognize
the free-fall orbits as the second face of the three-body problem. This
is somewhat like the Roman mythological god Janus who had two
(identical) faces which could not be told apart, except here the two
faces are di�erent: one �face� of 3-b. problem is regular, with many
stable orbits and the other is chaotic without a single stable orbit. It
gives credence to the oft-repeated, but never justi�ed mantra that the
3.b. problem is chaotic: well, it is if you look at it from one end, but
not otherwise.



D
ra
ft

42/43

◀◀
▶▶
◀
▶

Back

Close

Recently published papers

Hristov, I., Hristova, R., Dmitra�sinovi�c, V., Tanikawa, K.
�Three-body periodic collisionless equal-mass free-fall orbits revisited�
Celestial Mechanics and Dynamical Astronomy, 136(1), 7, 2024

Hristov, I., Hristova, R., Dmitra�sinovi�c, V., Tanikawa, K.
�Instability of three-body periodic collisionless equal-mass free-fall orbits�
In Journal of Physics: Conference Series (Vol. 2910, No. 1, p. 012030).
IOP Publishing, 2024

Hristov, I., Hristova, R. �An e�cient approach for searching three-
body periodic orbits passing through Eulerian con�guration�
Astronomy and Computing, 49, 100880, 2024

Hristov, I., Hristova, R., Puzynin, I., Puzynina, T., Sharipov,Z., Tukhliev,Z.
�Searching for New Nontrivial Choreographies for the Planar Three-
Body Problem� Physics of Particles and Nuclei, 55(3), 495-497, 2024



D
ra
ft

43/43

◀◀
▶▶
◀
▶

Back

Close

ACKNOWLEDGMENTS

We acknowledge the access to the Nestum cluster at HPC Laboratory,
Research and Development and Innovation Consortium, So�a Tech Park.

We are also grateful for the opportunity to use the resources of the
HybriLIT platform, JINR, Dubna, Russia.

We thanks Richard Montgomery for the prompt reply of the questions
concerning the �half period� property and for the proof of this property.

THANK YOU FOR YOUR ATTENTION!


